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Abstract. Vessel segmentation is a key step for various medical applications, 

such as diagnosis assistance, quantification of vascular pathology, and treatment 

planning. This paper describes an automatic vessel segmentation framework 

which can achieve highly accurate segmentation even in regions of low contrast 

and signal-to-noise-ratios (SNRs) and at vessel boundaries with disturbance in-

duced by adjacent non-vessel pixels. There are two key contributions of our 

framework. The first is a progressive contrast enhancement method which 

adaptively improves contrast of challenging pixels that were otherwise indistin-

guishable, and suppresses noises by weighting pixels according to their likeli-

hood to be vessel pixels. The second contribution is a method called canny re-

finement which is based on a canny edge detection algorithm to effectively re-

move false positives around boundaries of vessels. Experimental results on a 

public retinal dataset and our clinical cerebral data demonstrate that our ap-

proach outperforms state-of-the-art methods including the vesselness based 

method [1] and the optimally oriented flux (OOF) based method [2].  

1   Introduction 

The segmentation of vascular structures plays a significant role in diagnosis assistance, 

quantification of vascular pathologies, treatment and surgery planning. For instance, 

segmenting arteries and their bifurcations in the Circle of Willis, and quantifying their 

changes over a span of time can facilitate cerebral aneurysm detection and develop-

ment analysis. In neurosurgical procedures, vessels, giving indication of where the 

blood supply of a lesion is drawn from and drained to, often serve as landmarks and 

guidelines to the lesion during surgery. The more accurate the vascular segmentation 

is, the more precise a computer-guided procedure can be made.  

With growing streams of data generated by modern imaging modalities, such as 

computed tomography angiography (CTA) and magnetic resonance angiography 

(MRA), automatic vessel segmentation to minimize laborious and error-prone manual 

operations is in great demand. There have been numerous dedicated research efforts 

on this subject over years. Some of most successful ones apply filters (e.g. Hessian-

based filters [1], optimally oriented flux (OOF) [2], steerable filters [19], and learned 

filters [3, 4, 5, 6, 7, 8]) to individual pixels and classify a pixel as a part of a vessel or 

not based on its filter response. However, these filters mainly rely on image gradients 

or high-order derivatives, thus they can hardly provide accurate responses at regions 
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with very low contrast and a poor signal-to-noises ratio (SNR). The top row of Figs. 1 

(b) and (c) display a sub-region of a retinal vessel image of Fig. 1 (a) and a contrast-

enhanced version, respectively. Due to low image contrast, several small vessels in 

Fig. 1 (b)-top can barely be distinguished. Applying contrast enhancement to this 

region could slightly improve the visibility of small vessels while greatly increase 

noises resulting in a low SNR (as shown in Fig. 1 (c)-top). As a result, most existing 

methods fail to achieve a high true-positive rate and a low false-positive rate in those 

regions (as shown in Fig. 1 (d)-top). Another limitation of existing methods is that 

vascular filters usually give similarly weak responses for pixels around vascular bor-

ders, either vessel or non-vessel pixels, resulting in inaccuracy in localizing the true 

boundary of a vessel tube. As shown in Fig. 1 (d)-bottom, most pixels in the neigh-

borhood of vessel boundaries are incorrectly classified (as denoted in red) which 

could result in inaccurate quantification of vascular pathologies and diagnosis. 

In this paper, we present an automatic vessel segmentation framework, with the 

primary focus on achieving high accuracy in two challenging scenarios: in regions 

with low contrast and low SNR and at vessel boundaries. Specifically, there are two 

main contributions of the proposed framework: 

1. We propose a progressive contrast enhancement method that iteratively excludes 

a subset of pixels, which have been identified as vessel pixels with high confi-

dence in previous iterations, from contrast enhancement in the next iteration. 

Comparing to existing methods which process all pixels within a particular region, 

the proposed approach, adjusting the contrast only for the remaining pixels in 

each iteration, places more emphasis on challenging pixels which are difficult to 

be classified in previous iterations. As a result, our approach can better capture 

subtle vessel information in low contrast regions. To further suppress noises in 

low SNR regions, we weight the intensity of every pixel based on a function of 

shape responses to reduce the impact of noises in the contrast enhancement pro-

cedure. The idea behind this strategy is that the shape information is complemen-

 Fig. 

1. Limitations of existing vessel segmentation methods. (a) An exemplar retinal image. (b) and (c) are 

grayscale images of two sub-regions and their contrast-enhanced results respectively. (d) Segmentation 

results for the contrast-enhanced images based on vesselness (i.e. the Frangi’s method [1]), one of the most 
popular methods for vessel segmentation. White, green and red colors indicate true positives, false 

negatives and false positives, respectively. Two major limitations of the Frangi’s method can be observed: 
1) for regions with a low contrast and SNR, it fails to detect most of small vessels (green pixels in (d-top)) 

and incorrectly classifies many noises as vessels (red pixels in (d-top)); and 2) it fails to precisely localize 

boundaries of vessels (d-bottom). Although we use results of the Frangi’s method for illustration, these two 
limitations are common for most existing methods.    

 



tary to the intensity information and it is less likely that a non-vessel pixel with 

high noise could have both its shape response and its intensity value similar to 

those of a vessel pixel. 

2. We propose a simple yet effective method, called canny refinement, for precisely 

localizing vessel pixels, particularly at vessel boundaries.  Our method employs 

canny edge detection to identify pixels on the boundaries of vessels. Then a ro-

bust and effective function is designed based on canny edges to determine wheth-

er a pixel is between two boundaries of a vessel or is outside a vessel. Based on 

the output of the function, the system method can refine the filtering results and 

minimize false positives which are outside a vessel.  

The rest of the paper is organized as follows. Section 2 reviews the related work. 

Section 3 presents details of the proposed method. In Section 4, we compare the per-

formance of our method with two state-of-the-art methods. Section 5 concludes the 

paper. 

2   Related Work  

The broad application of vessel segmentation has stimulated the development of sev-

eral categories of approaches, each of which has distinct strengths. Active contour 

within the level set framework [11, 12, 13], which is capable of handling topology 

changes and is adaptable to shapes of complex vessel structures, has proven to be 

effective for vessel segmentation. Several enhancements have been made for further 

performance improvement. Most recent efforts [9, 10] have been focusing on simpli-

fying and automating the parameter settings to achieve optimized performance for a 

wide range of data content and quality. 

Another category of approaches applies vessel enhancement filters to individual 

pixels and then classifies each pixel, as either a vessel or a non-vessel pixel, by 

thresholding the filtering score [1, 2, 3, 5, 6, 7, 8, 20, 21]. Our framework belongs to 

this category. A number of vessel enhancement filters have been developed in recent 

years. Some of them utilize the second-order derivatives to distinguish specific tubu-

lar shape of vessels, which have a locally prominent low curvature orientation (i.e. the 

vessel direction) and have planes of a high intensity curvature (i.e. the cross-sectional 

planes) [1, 20, 21, 22, 23].  The Hessian matrix is the most common tool to capture 

tubular structure information.  Eigenvalues of the Hessian matrix can discriminate 

between plane-, blob- and tubular-like structures, and corresponding eigenvectors 

indicate the vessel orientations. A representative example of the Hessian-matrix based  

method is the vesselness filter proposed in Frangi et al. [1] which has been widely 

used in practice, owing to its intuitive geometric formulation. The Weingarten matrix 

is a less popular alternative to the Hessian matrix. Filters based on the Weingarten 

matrix include those proposed in [22] and [23].  

Instead of analyzing the second-order derivatives, another category of methods ex-

ploit the local distribution of the gradient vectors. For instance, the method in [3] 

analyzes the eigenvalues of the gradient vectors’ covariance matrix. Bauer and Bis-

chof [24] leveraged a vector field obtained from the gradient vector flow (GVF) diffu-

sion. Law and Chung proposed the use of optimally oriented flux (OOF) [2] which 

relies on the measure of gradient flux through the boundary of local spheres. Compar-



ing to the Hessian-based filters, OOF could be more accurate and less sensitive to 

disturbances from adjacent structures. 

It has been pointed out in recent literature [5, 6, 7, 8] that real vascular structures, 

which do not necessarily conform to an ideal tubular shape model, can drastically 

impact the performance of methods relying on handcrafted shape filters. Several ef-

forts have been made to learn filters to describe convoluted appearances and struc-

tures of vessels. For instance, Agam et al. [3] estimated the eigenvalue distribution of 

the gradient vectors’ covariance matrix via Expectation Maximization. Support Vec-

tor Machines operating on the Hessian’s eigenvalues have been used to discriminate 

between vascular and nonvascular pixels [4]. In [8], rotational features were comput-

ed at each pixel using steerable filters and fed to an SVM to classify pixels as vessel 

pixels or not. Inspired by [8], a series of improvements [5, 6, 7] were made which 

include more filters (i.e. vesselness [1] and OOF [2]), in addition to the steerable 

filters, and leverage more advanced machine learning techniques. A comprehensive 

survey of vessel segmentation methods can be found in [15, 16]. 

The problem, however, is that both handcrafted and learned filters mainly rely on 

image gradients or high-order derivatives, thus their responses are sensitive to noises 

and often too weak to discriminate vascular and nonvascular pixels in low contrast 

regions. Today’s angiograms inevitably contain noises and exhibit inhomogeneous 

contrast. The intensity of some vessels (particularly narrow vessels) could differ from 

the background by as little as four grey levels, yet the standard deviation of back-

ground noise is around 2.3 grey levels. As a result, most, if not all, existing filters are 

ineffective in low contrast and/or low SNR regions. In addition, vascular filters usual-

ly produce weak responses around vascular borders, yielding difficulties in precisely 

localizing the exact boundary of a vessel tube. Imprecise boundary localization could 

consequently result in inaccurate quantification of pathologies and diagnosis. This 

paper focuses on addressing these two challenging problems. Specifically, we pro-

posed two techniques: progressive contrast enhancement and canny refinement, which 

can be used together with existing filtering based methods and greatly boost their 

segmentation performance in low contrast, low SNR regions and at vascular bounda-

ries.  

3   Our Method 

Fig. 2 illustrates our vessel segmentation framework, which consists of three main 

components: vessel enhancement filtering (the orange block), canny refinement (the 

green block) and progressive contrast enhancement (the blue blocks). Given an input 

image, vessel enhancement filtering is first applied to every image pixel to obtain the 

likelihood of each pixel being a vessel pixel. In our implementation, we employ ves-

selness [1] and OOF filters [2], which are known as two of the best filters to date. 

Canny refinement is then applied to revise the filtering results: the filtering responses 

of those pixels classified to be outside a vessel by canny refinement are adjusted to 

zero (i.e. non-vessel pixel with the highest confidence). Based on the revised respons-

es, pixels which can be classified with high confidence as either vessel or background 

pixels are added to the final segmentation results and removed from the image.  The 

method adjusts the contrast of the remaining pixels by shape-weighted contrast en-



hancement and then restarts the above-mentioned procedure on the remaining pixels. 

Such procedure repeats until no more fine vessels can be detected or the number of 

iterations reaches a limit.  In the following, we provide technical details and describe 

strengths of canny refinement and progressive contrast enhancement. 

3.1   Canny Refinement 

Canny [25] has been widely regarded as the best solution for robust edge detection 

and precise localization of edge pixels. Vascular boundaries which can be approxi-

mated as step edges should be accurately localized by canny.  Fig. 3 (a) displays the 

vessel segmentation based on vesselness filtering overlaid with detected canny edges 

(the blue pixels). Clearly, many canny edge pixels correctly locate at real vessel 

boundaries, forming “classification planes” which separate true positives (the white 

pixels) from false positives (the red pixels). 

However, canny provides only the location of edges but could not determine 

whether a pixel adjacent to an edge is inside or outside of a vessel tube.  Therefore, 

solely relying on the edge location cannot remove false positives. To address this 

problem, we construct a verification map based on canny edges. Each entry of the 

map is a value of quadruples {1, 0, -1, null} (as shown in Fig. 3 (b)), i.e. 1 (green) and 

-1 (white) indicate pixels inside and outside a vessel tube, respectively. A 0 (red) 

denotes a pixel at the boundary and null (back) indicate pixels far from any edges and 

thus are unnecessary to be examined in the current iteration. Based on the verification 

map, the method can refine the filtering results, i.e. pixels with small filtering re-

sponse values and are labeled as -1 in the verification map are re-classified as nega-

tives. 

We design a robust and effective method to construct the verification map. The key 

idea of our method is outlined as follows. For every non-edge pixel P, we construct a 

vector PE from P to a nearby canny edge pixel E. Then we compute the dot product 

between PE  and the gradient orientation vector of pixel E. If P resides inside a vessel 

and vessel pixels are generally darker than the background, then the dot product is 

greater than zero; otherwise, the dot product is negative. Based on the sign of the dot 

product, we can determine whether a pixel is inside or outside a vessel. A verification 

map based on a single edge pixel is usually sensitive to noises.  To improve the ro-

bustness, for every pixel P we consider a set of the canny edge pixels {
iE R } near P 

and sum up the weighed dot product according to Eq. (1) (as illustrated in Fig.3 (c)).  

 

Fig. 2. Framework of vessel semgnetation with progressive contrast enhancement and canny refinement.  
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The weights wEi is sampled from a Gaussian distribution centered at P as Eq. (2), 
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Based on FP we can construct a verification map Vp according to Eq. (3).  
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3.2   Progressive Contrast Enhancement  

In this section, we first briefly overview conventional contrast enhancement ap-

proaches and their limitations for vessel segmentation, followed by details of our 

progressive contrast enhancement method.  

Histogram Equalization for Contrast Enhancement 

Heterogeneous contrast, resulting from the contrast agent inhomogeneity, noises and 

image artifacts, is a common problem in many medical image modalities. Histogram 

equalization is a common tool to increase contrast by stretching out the overall inten-

sity range of an image. More specifically, it maps one distribution (i.e. original histo-

gram of a given image) to another distribution (i.e. a wider and more uniform distribu-

tion of intensity values) based on a transformation function so that the intensity values 

can spread over the entire range. The transformation function is built based on the 

cumulative distribution function (CDF) defined as Eq. (4), 

0
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where px(i) is the probability of an occurrence of gray level i in image {x}, L is the 

total number of gray levels in the image (typically 256). The desired image {y} should 

have a flat histogram with a linearized CDF across the entire range, for a constant K. 

 
Fig. 3. (a) Segmentation based on vesselness filtering overlaied with detected canny edges. White, red and 

blue colors indicate true positives, false positives and canny edge pixels respectively. (b) Verification map 

based on canny edges. Green, white and red colors denote pixels reside inside a vessel, outside a vessel and 

at vessel boundary respectively. (c) Illustruction of our method for verificatiom map construction.  
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According to Eqs. (4) and (5), the intensity transformation function can be derived as 
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where M×N gives the total number of pixels in image {x}. 

However, histogram equalization often fails to provide satisfactory results for med-

ical images with inhomogeneous contrast. Regions that are much lighter or darker 

than the rest of the image cannot be sufficiently enhanced. In addition, it could over-

amplify noises in relatively homogeneous regions. Fig. 4 (c) displays the contrast-

enhanced result for Fig. 4 (a) based on histogram equalization. Clearly, background 

noises are greatly amplified. Contrast Limited Adaptive Histogram Equalization 

(CLAHE) [15] is a popular solution to address these problems. It adjusts contrast 

locally by deriving a local transformation function from a neighborhood region of 

each pixel, and clips the histogram at a predefined value before computing the CDF to 

prevent over-amplification of noises. However, for images with a very low SNR, 

CLAHE still cannot effectively suppress noises, resulting in a noisy background and 

rough vessel boundaries (as shown in Fig.4 (d)). More importantly, although CLAHE 

performs equalization locally, it is inevitable that a local region contains both large 

vessels with good contrast to the background and fine vessels with low contrast (as 

shown in Fig. 1 (a)-top). For these regions, results are usually dominated by large 

vessels, resulting in insufficient enhancement for small vessels (as shown in Fig. 1 

(b)-top). Our progressive contrast enhancement can more successfully suppress noises 

through weighting each pixel’s intensity by its shape filtering response and focus 

mainly on enhancing contrast of challenging pixels (i.e. small vessel pixels) in each 

iteration.  

 
Fig. 4. Illustration of contrast enhancement results based on different methods. (a) Original image with 

cerebral vessels. (b) Ground truth obtained by manual label. (c) – (d) Contrast enhancement results based 
on histogram equalization and CLAHE with clip limit being 30, region size being 50×50. (e) – (f) Contrast 

enhancement results based on shape-weighted CLAHE with λ being 0.5 and 0.8, respectively. Shape 

information is obtained by vesselness filtering. 



Shape-Weighted Contrast Enhancement 

CLAHE utilizes only the intensity of an image, thus is very sensitive to noises which 

have similar intensity values as vessels. The local geometric structure around each 

pixel is a discriminating feature useful for distinguishing vessel pixels from random 

noises. In addition, the local shape information is complementary to the intensity 

information, thus it is less likely that noise pixels have similar values of both shape 

responses and intensity as vessel pixels. Based on these observations, we propose to 

use local shape information S(x) obtained from vessel enhancement filtering (i.e. 

vesselness or OOF) to weight the corresponding pixel intensities Inorm(x) before per-

forming CLAHE, as shown in Eq. (7). Intensities are normalized to the range of [0, 1] 

and for images in which vessel pixels are darker than the background, we reverse each 

pixel’s intensity value by subtracting the original normalized intensity from 1.  We set 

a parameter λ to adjust the impact of the weights. Larger λ results in greater impact of 

weighting and vice versa. 

 

 

( ) ( )              vessel pixels are brighter than background
( )

(1 ( )) ( )       vessel pixels are darker than background

norm

new

norm

I x S x
I x

I x S x





 
 

 

  (7) 

Figs. 4 (e) and (f) show the enhanced results based on shape-weighted CLAHE with λ 

being 0.5 and 0.8, respectively. Pixels in homogeneous regions generally have small 

shape responses and thus most noises in those regions can be prevented from being 

amplified. Increasing λ from 0.5 to 0.8 can suppress more noises, while may also 

decrease the contrast for regions around small vessels (as indicated by red rectangles 

in Figs. 4 (e) and (f)), resulting from inaccurate shape responses due to low contrast at 

these regions. In our implementation, we set λ to 0.8 as the default value which pro-

duced the best empirical results. 

Progressive Contrast Enhancement on Challenging Pixels 

It’s common that both large and fine vessels appear in the same regions (as illustrated 

by red rectangles in Fig. 5). Within such a region, large vessels have better contrast to 

the background (either darker or brighter) than small vessels. As a result, the intensity 

range is often dominated by large vessels, resulting in insufficient enhancement for 

small vessels in such a region. Reducing the region size of CLAHE could help limit 

the size differences in a region, but may also reduce the robustness of CLAHE.  

To address this problem, we propose to progressively increase contrast for vessels 

of different sizes. In each iteration, we detect distinguishable vessel pixels that can be 

easily classified as vessels with high confidence and remove them from further con-

sideration in future iterations. In each iteration, shape-weighted CLAHE is applied 

only to those remaining pixels, which usually contain smaller vessels which have not 

been detected in previous iterations. After the contrast enhancement to this subset of 

pixels in the image, more pixels in fine vessels can be detected and removed from 

consideration in future iterations. We repeat this iterative procedure until no more 

fine-vessel pixels can be detected or a limit on the iteration count is reached. 

To classify vessel and background pixels with high confidence in each iteration, we 

set two strict thresholds. That is, pixels whose filtering responses are greater than a 

high threshold TH or smaller than a low threshold TL are classified as vessel and back-

ground pixels respectively; the remaining pixels whose responses fall within the range 

of TH and TL are considered as unknown and their labeling will be done in future itera-



tions. To guarantee that the true-positive and true-negative rates are both high for the 

classification, we exploited multiple settings of the parameters for running CLAHE to 

generate several enhanced results and performed vessel enhancement filtering and 

classification for every resulting image. Pixels which are classified as vessel pixels in 

all of the resulting images are considered as robust and distinguishable vessel pixels. 

They are then labeled as vessel pixels and excluded from consideration in future itera-

tions.   

Fig. 5 compares the contrast enhancement results based on CLAHE and the 2nd 

round progressive contrast enhancement, respectively. We highlight a small region 

containing both small vessels and part of a larger vessel by a red rectangle and display 

the verification map of this region. Clearly, the result obtained by our progressive 

contrast enhancement provides better visibility of small vessels and contains fewer 

noises. As a result, the verification map is more accurate than that of CLAHE. 

4   Experimental Results 

In this section, we provide quantitative evaluation of our method using a public retinal 

dataset, DRIVE [18], and clinical cerebral data. We first describe our datasets and the 

evaluation metric, followed by the results and analysis. 

4.1   Datasets  

DRIVE [18] is a public-available dataset of 2D RGB retinal scans to enable compara-

tive studies on segmentation of blood vessels in retinal images. Each image was cap-

tured using 8 bits per color plane at 768 × 584 pixels and was JPEG compressed. The 

entire dataset contains 40 images which are divided into a training set and a testing set, 

both containing 20 images. For each testing case, two ground truths obtained by man-

ual segmentation are provided. We test our approach on the testing images of DRIVE. 

Figs. 7 (a) and (b) show an exemplar image and one ground truth image from DRIVE. 

 
Fig. 5. Illustration of contrast enhancement results based on (a) CLAHE and (b) the 2nd round progressive 
contrast enhancement. A region including both challenging pixels (i.e. small vessels) and part of a larger 

vessel are highlighted by a red rectangle. Its enlarged version and the verification map are displayed on the 
right. Clearly, our progessive contrast enhancement can provide much fewer noises, better visibility of 

small vessels and hence a more accurate veirfication map for small vessels. The parameter settings for 

CLAHE are the same for both (a) and (b), i.e. clip limit = 30 and region size = 50×50.  



We also evaluate our method on 2D clinical cerebral vessel data, approved by [re-

moved for anonymous submission]. The image was obtained by digital subtraction 

angiography (DSA), represented using 8bits grayscale TIFF format, including 560 × 

414 pixels. For quantitative evaluation, we asked two experts to manually label the 

image, yielding two ground truth images. Figs. 8 (a) and (b) illustrate our cerebral 

vessel image and one of its ground truth images. 

The primary focus of this paper is to improve the segmentation performance in 

challenging scenarios. Thus, the ground truth data must be able to facilitate evaluation 

and performance comparison for the challenging cases. For this purpose, we further 

divide all pixels in each ground truth image into two parts: vessel pixels which can be 

correctly classified by all baseline methods we have implemented are labeled as easy 

pixels and pixels which are incorrectly labeled by at least one baseline method are 

marked as challenging pixels. Specifically, we implemented two baseline methods: 

vesselness based method and OOF based method (details about baselines can be Sec. 

4.3). The threshold for binary classification is adjusted so that the precision is above 

95%. Figs. 7 (c) and (d), and Figs. 8 (c) and (d) illustrate the easy and challenging 

vessel pixels in the ground truth images, respectively. Obviously, challenging pixels 

are mainly located around vessel boundaries and at small vessels which have very low 

contrast to its surrounding background.  

4.2 Evaluation Metric  

We use recall and precision to evaluate the segmentation performance. Recall is de-

fined as the number of true positives which are identified as vessel pixels in both 

ground truth and segmented image divided by the total number of vessel pixels in the 

ground truth. Precision is defined as the number of true positives divided by the total 

number of pixels that are identified as vessel pixels in segmented images. As men-

tioned in Section 4.1, we focus our evaluation on challenging pixels, thus we exclude 

easy vessel pixels from the precision-recall calculation, as shown in Eqs. (8) and (9), 

     

easyTP TP
Recall

challenging vessel pixels in ground truth


     (8) 

-

     

easyTP TP
Precision

challenging vessel pixels in segmented image
   (9) 

   

We plot the Recall-Precision curve to demonstrate the overall segmentation per-

formance when varying the threshold parameter for binary classification. The larger is 

the area under the curve, the better the performance of the method.  

4.3 Experimental Setup  

Any existing vessel enhancement filter can be used in the first step of our segmenta-

tion framework (the orange block of Fig. 2). In this work, we experimented with two 

filters: multi-scale vesselness and multi-scale OOF, due to their widely-acknowledged 

good performance for delineating tubular structures. We utilized the ITK implementa-

tion for multi-scale vesselness filtering and relied on [17] for the implementation of 

OOF. For each filter, we manually adjusted parameters to obtain the best performance 



and used the same parameter settings throughout the entire evaluation process. For 

both filters, we used identical parameters for multi-scale processing - the minimum 

and maximum standard deviations for Gaussian are set to 0.5 and 5, respectively, and 

the total number of scales is set to 10. 

In our experiments, we compared six methods: vesselness, OOF, vesselness with 

canny refinement (i.e. vesselness+CR), OOF with canny refinement (OOF+CR), ves-

selness with the two proposed techniques (Pro-vesselness+CR), and OOF with the 

two proposed techniques (Pro-OOF+CR). 

4.4 Results 

Figs. 6 (a) and (b) show the comparison results on the retinal and cerebral data respec-

tively. First, we evaluate the effectiveness of canny refinement. We compare the per-

formance of vesselness and vesselness+CR, as shown by red and light green curves in 

Figs. 6 (a) and (b). When the recall is relatively small (e.g. below 75% in (a) and 

below 70% in (b)), canny refinement can greatly improve the precision by removing 

false positives arising from random noises and the disturbing objects adjacent to ves-

sel boundaries. However, when the recall is greater than a certain value, canny re-

finement could adversely decrease the precision. This is mainly because canny edge 

detection may incur errors, e.g. missing true edges of vessels and mistakenly detecting 

edges on noises, especially in regions with poor contrast and a low SNR. Incorrect 

canny edges may lead to errors in the verification map, yielding incorrect removal of 

true vessel pixels.  As a result, reducing the threshold cannot improve the recall any 

more while reduce the precision. Similar results can be observed by comparing the 

results of OOF (blue curves) and OOF+CR (purple curves) for both datasets.  

Next, we examine the effectiveness of progressive contrast enhancement. We com-

pare the performance of vesselness (the red curves), vesselness+CR (the light green 

curves) and Pro-vesselness+CR (the light blue curves). Clearly, Pro-vesselness+CR 

outperforms the other two methods over the entire range. In particular, for large recall 

(i.e. greater than 70%) progressive contrast enhancement can help greatly boost the 

performance of vesselness+CR and maintain superior performance to vesselness. This 

result demonstrates that progressive contrast enhancement can effectively improve the 

 
Fig. 6. Recall-Precision curves obtained for (a) the retinal vessel data and (b) the cerebral vessel data. Our 

method with  canny refinement and progressive contrast enhancement outperforms vesselness and OOF 

over the entire range.  



contrast and SNR in low quality regions, and in turn increase the detection rate of 

vessels in those regions.  Similar results can be also observed for methods based on 

OOF filters.  

The second row of Figs. 7 and 8 illustrate the segmentation results for a retinal and 

a cerebral image respectively. We omit the results for OOF+CR and Pro-OOF+CR 

since their results are similar to those of vesselness+CR and Pro-vesselness+CR. For 

the first three methods ((e)-(g)), i.e. vesselness, OOF and vesselness+CR, we manual-

ly tune the threshold so that the recalls for all the three methods are similar 

(57%~58%). We then compare their precisions (as shown under the segmentation 

results). For the retinal image, vesselness+CR achieves 10% and 5% greater precision 

than vesselness and OOF respectively. For the cerebral image, it is 10% and 22.7% 

higher than those of vesselness and OOF respectively. We further applied progressive 

contrast enhancement to the results of vesselness+CR (as shown in (h)), which im-

proves the recall by another 10%~15% while maintaining the precision.   

5   Conclusion 

In this paper, we present a framework for accurate vessel segmentation in two chal-

lenging scenarios: in regions with poor contrast and a low SNR, and at vessel bounda-

ries. We propose and validate two techniques:  progressive contrast enhancement and 

canny refinement. Progressive contrast enhancement involves an iterative procedure 

where each iteration emphasizes only on challenging pixels (usually pixels of small 

vessels) which were not distinguishable in previous iterations. Experimental results 

demonstrate that by excluding large vessel pixels detected in previous iterations from 

contrast enhancement, small vessel pixels can be better highlighted by CLAHE. In 

addition, progressive contrast enhancement can effectively suppress noises spread in a 

homogeneous background by weighting pixels according to their shape responses. 

 

Fig. 7. Illsutration of segmentation results on an exemplar retinal image. (a) Original image. (b) A ground 
truth image. (c) and (d) indicate easy and challenging vessel pixels on the ground truth image. (e) – (h) 

show the segmentation results of four methods. Pro-vesselness+CR achieves the best performance. 

 



This paper also demonstrates that canny refinement which constructs a verification 

map based on canny edges can successfully minimize false positives around bounda-

ries of vessels. Experimental results on a retinal dataset and a cerebral data demon-

strate that the two proposed techniques can greatly improve the performance of state-

of-the-art filtering-based segmentation methods, such as vesselness and OOF.  
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