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Abstract� Active contour is a popular technique for vascular 

segmentation. However, existing active contour segmentation 

methods require users to set values for various parameters, 

which requires insights to the m������	
 �����������


formulation. Manual tuning of these parameters to optimize 

segmentation results is laborious for clinicians who often lack in-

depth knowledge of the segmentation algorithms. Moreover, a 

global parameter setting applied to all voxels of an input image 
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appearance variability caused by the contrast agent 

inhomogeneity and noises. In this paper, we present a method 

which adaptively configures parameters for Geodesic Active 

Contours (GAC). The proposed method leverages shape filtering 

to produce a parameter image, each voxel of which is used to set 

parameters of GAC for the corresponding voxel of an input 

image. An iterative process is further developed to improve the 

accuracy of the shape-based parameter image. An evaluation 

study over 8 clinical datasets demonstrates that our method 

achieves greater segmentation accuracy than two popular active 

contour methods with manually optimized parameters. 

Keywords�Cerebral vessel, Aneurysm, Adaptive configuration, 

Geodesic active contour, Shape analysis 

I.  INTRODUCTION 

A cerebral aneurysm is an abnormal enlargement of any 
artery located at or near bifurcations of the arteries in the Circle 
of Willis. Aneurysm rupture accompanied with subarachnoid 
hemorrhage (SAH) is a serious complication which causes 
32% to 67% fatality and 10.9% morbidity due to intracranial 
bruise, subsequent recurrent bleeding, stroke, hydrocephaly 
and vessel spasm [1][2].  

Computed Tomography Angiograph (CTA) is one of the 
most frequently used diagnostic images for vessel examination 
and aneurysm detection. The segmentation of aneurysm and 
the surrounding vascular structure on CTA images has a 
significant role in diagnosis and treatment planning. Despite 
the tremendous amount of dedicated research, automatic 
vascular segmentation on CTA images remains challenging 
due to noises, inhomogenous image intensity and gradient, and 
the presence of bone tissues which are close to vessels and 
have similar intensity values as vessels. 

Active contour within the level set framework 
[6][9][11][13] has been widely accepted as a suitable technique 
for vascular segmentation due to its ability to handle topology 
changes and adapt to shape of complex structures such as 
blood vessels. However, the outcome of active contour 
segmentation depends on a number of parameters. Finding the 

right set of parameters can be difficult even for users familiar 
with the algorithm. Besides, vessels usually present high 
appearance variability due to the contrast agent inhomogeneity, 
noises and image artifacts. As a result, a global parameter 
configuration for all voxels of an image can hardly achieve 
satisfactory results. Fig. 1 shows exemplar segmentation results 
based on two configurations. Configuration A can suppress 
noises on slice �, while causes discontinued boundary on slice 

, and in turn causes leakage as indicated in . Configuration 

B enhances gradients to ensure a closed boundary on slice  

while increases noises within the vessel on slice �, yielding an 
incomplete segmentation. Difficulties in parameter selection 
greatly discourage the use of active contour techniques in the 
clinical environment. An adaptive and location-dependent 
configuration method is of high demand to bridge the gap 
between algorithm advancement and clinical routine, while 
insufficient effort has been made in this direction.  

In this paper we focus on adaptive parameter setting for 
Geodesic Active Contours (GAC) [4], a widely-used active 
contour method relying on gradient information for contour 
evolution. A key parameter of GAC that critically affects the 
final segmentation results and is sensitive to image content lies 
in the step of gradient mapping. The key idea of our method is 
to utilize shape information as prior knowledge to guide 
parameter setting in this step. Specifically, we construct a 
parameter image, each voxel of which is determined by shape 
filtering and is used to configure the mapping function for the 
corresponding voxel of an input image. The result of shape 

 
Fig. 1. Segmentation results obtained by two global configurations of 

Geodesic Active Contours (GAC).  The first and second rows show the results 

produced by Configurations A and B respectively. For each configuration,  

and  display the feature maps of two generated slices, and  shows the 

segmentation result.  Red color indicates segmented voxels. 
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filtering inevitably contains noises which result in errors in the 
parameter image and in turn mislead the configuration of GAC. 
To address this problem, we propose to iteratively correct the 
shape-based parameter image using the result of gradient 
mapping since it provides complementary information to the 
shape and thus is less likely to have errors at the same location. 

An evaluation study over 8 clinical datasets demonstrates 
that our method achieves 86.1-99.2% segmentation accuracy 
with respect to the ground-truth. Compared to two widely-used 
active contour methods (i.e. geodesic active contours [4] and 
region completion [5]) with manual performance optimization 
our method can achieve consistently greater segmentation 
accuracy in addition to significant reduction in the 
configuration effort. 

The rest of the paper is organized as follows: Section 2 
reviews the related work. Section 3 presents details of the 
proposed method. In Section 4, we compare performance of 
our method with related active contour methods. Section 5 
concludes the paper. 

II. RELATED WORK  

In recent years, active contour implemented using level set 
techniques has been widely used for object segmentation. A 
number of active contour segmentation methods have been 
developed to date [4][5][10][12][14]. However, general active 
contour methods can hardly achieve satisfactory performance 
for 3D vascular segmentation due to the complex structure of 
vessels, limited image resolution, and artifacts in medical 
imagery. Several efforts have been made to adapt existing 
active contour methods to 3D vascular segmentation by 
leveraging specific characteristics (i.e. hyper-intensity and 
tubular-like shapes) of vessels. Nain et al. [6] proposed a ball 
measurement which is used as a shape prior to penalize local 
widening of contours and to maintain the shape elongation. 
However, their method may incorrectly penalize local 
enlargement due to aneurysms and bifurcations, resulting in 
incomplete segmentation at those locations. Several vessel-
dedicated features are designed to produce a force field which 
drives the contours towards vessel edges. Notable results 
include the spherical flux measure [15], optimally oriented flux 
[16][17], the Hessian-based vessel filter [8], etc. Recently, 
Hernandez et al. proposed non-parametric geodesic active 
contours [9] which incorporate high-order multiscale features 
to model cerebral vessel and aneurysm tissues.  Despite of 
performance improvements demonstrated by these methods 
dedicated to 3D vascular segmentation, setting proper values 
for a set of parameters to achieve optimized results remains a 
problem for users.  

To bring active contour segmentation to the fingertips of 
general users, Yushkevich et al. [3] developed ITK-SNAP, an 
open-source software which utilizes user-friendly interface and 
live feedback to facilitate parameter selection for medical 
image segmentation. However, their method still requires 
manual configuration. Another limitation is that the software 
only allows a single configuration that globally applied to all 
voxels in the entire 3D image, which often results in sub-
optimal performance.         

III. OUR METHOD

In this section, we begin with a brief introduction of 

Geodesic Active Contours followed by details of the proposed 

method for adaptive parameter setting.  

A. Geodesic Active Contours 

Active contour segmentation constitutes a popular class of 
image segmentation techniques that evolve a closed 
curve/surface through a combination of different forces: 
external forces, derived from the image, and internal forces, 
�������� ��	
� ���� 	��	����� ��	
����� ���� ���� ����� �	� �
�	���
regularity constraints on the shape of the contour.  GAC 
defines forces acting on the contour as: 

( )I IF g g N� �� �� � � � 	 ) ,   (2) 

where gI is the speed function derived from the gradient 
magnitude of the input image I and acts outward to drive the 
contour to expand; � is the mean curvature of the contour 
which controls the smoothness of the evolving curve; NN  is the 

unit normal to the contour and 
Ig N� 	N  is called advection forces 

which acts inwards when the contour approaches an edge and 
is parallel to it;  �, � and � are weights modulating the relative 
contributions of the three components of F.  

In [4], the speed function gI is derived as follows: 
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where NGMI  is the normalized gradient magnitude of I(x); 
G�*I(x) denotes convolution of I(x) with an Gaussian kernel 
G��������������-specified parameter that determines the shape of 
the monotonic mapping between a normalized gradient 
magnitude and a speed function. According to Eq. (3), the 
value of gI is close to 0 at edges and closed to 1 in regions 
where intensity is nearly constant. 

Choices of �, �, � and v affect the outcome of GAC, but we 
observe that the value of v is much more content-dependent 
than the other three parameters. We evaluate the variances of 
optimal values for each parameter with respect to different 
images. Specifically, for 8 different datasets (details of datasets 
will be provided in Section 4) we exhaustively search optimal 
parameter values for each dataset and for each parameter we 
calculate the variance of the 8 optimal values. Experimental 
results show that optimal values for �, �, � remain the same for 
all datasets (i.e. variance is 0) while optimal values of v vary 
significantly (i.e. variance is ~30% of the mean). In addition, 
due to imhomogeneous image gradient on vessel boundaries, a 
single choice of v may either lead to a large gI at the boundary 
of a vessel which has a small gradient value, yielding leakage 
(illustrated in the first row of Fig.1) or cause a small gI inside a 
vessel tube due to high frequency noises, yielding incomplete 
segmentation (illustrated in the second row of Fig.1). 
Therefore, the value of v should be determined according to 
image contents and could have different values for different 
regions, or even voxels. In the following, we present our 
content-based method for adaptive selection of v. 
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B. Adaptive Parameter Setting for Speed Function 

A key characteristic of blood vessels is their specific 
shapes. The main idea of our method is to utilize shape 
information as prior knowledge to guide the mapping between 
gradient and speed function so that gradients at boundaries of 
vessel-like regions are enhanced while those inside or outside 
vessel-like regions are suppressed. Specifically, the outcome of 
our adaptive configuration algorithm is a parameter image 
which is constructed based on shape filtering and each element 
of a parameter image is used to configure the speed function 
for the corresponding voxel of an input image.  

A number of methods have been developed for vessel-like 
shape filtering [8][18]. These methods usually use tubes and 
blobs to model shapes of healthy vessels and aneurysms 
respectively. Shape filters are designed with the goal of 
producing large response values at locations close to the 
centers of tube-/blob-like regions, small values at borders of 
tube-/blob-like regions and a zero value everywhere else. With 
the modified speed function as Eq. (4), responses of shape 
filtering v(x) meet the objective of amplifying gradients at 
vessel borders, reducing gradients inside vessels, and removing 
gradients on non-vessel tissues, and thus can be used as our 
parameter image.   
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  (4)  

An error-free shape-based parameter image is hard to 
achieve, especially at sites where geometric structure of vessels 
cannot be approximated by pre-defined shape models. For 
instance, bifurcations of arteries which cannot be modeled 
using a single tube or a blob may incorrectly result in zero v(x) 
(as shown around the center of parameter image in Fig. 2(b)) 
and consequently lead to discontinued contours at these 
locations. Despite the imperfection of both gradient image and 
parameter image (Fig. 2(a) and (b)), errors on these two images 
are caused by different reasons (i.e. low contrast causes 
discontinuities in a gradient image while inconformity with 
pre-defined models causes errors in a parameter image), thus 
they are less likely to occur at the same location. Based on this 
observation, we propose an iterative process in which the 
parameter image is iteratively updated by the gradient and the 
speed gI, and in turn the mapping between the gradient and the 
speed is iteratively guided by an updated parameter image.   

Fig. 3 illustrates the workflow of our Geodesic Active 
Contours with adaptive configuration.   In the following, we 
present details of iterative parameter image construction. 

Iterative Parameter Image Construction 
The key idea of iterative parameter image construction is 

based on the vessel continuity. The shape responses of a voxel 
vi should not be significantly different from that of a connected 
voxel vi-1 if vi-1 has been proven to reside in a vessel. We 
consider vi is connected with vi-1 if vi is adjacent to vi-1 and the 
gradient magnitude of vi is close to that of vi-1. We can reliably 
classify a voxel as a vessel voxel if its speed function value is 
non-zero, which indicates both a large gradient magnitude and 
a non-zero shape response according to Eq. (4). We replace the 
shape response of vi with the response of its connected voxel vi-

1 if the response of vi is much smaller than that of vi-1. Once the 
parameter image is revised, we update the speed function 
accordingly. The process iterates until the parameter image 
become stable. The updated parameter image of Fig. 2(b) is 
shown in Fig. 2(c). Fig. 4 shows detailed steps of parameter 
image construction:   

� An initial shape-based parameter image is first constructed 
based on mutiscale Hessian matrix analysis [8]. In particular, 
two shape filters are employed to enhance tube-like and blob-
like regions respectively as:  

2 3

2 2 2
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where Vt and Vb are tube and blob filters respectively; �1, �2 and 
�3 are eigenvalues of Hessian matrix and | �1����� �2����� �3|;  a, b 
and c are weights modulating the relative contributions of the 
three components of filters. Each voxel of an initial parameter 
image is set as the greater value of Vt and Vb at the 
corresponding location. It is worth noting that although 3 more 
parameters (i.e. a, b and c) are introduced, like �, �, � in Eq. 
(2), they are not sensitive to image content. Thus they can be 
set statically and do not need to be exposed to end users.  

� Connected components (CC) are detected on the initial 
parameter image. Iterative updates to the parameter image are 
conducted within each connected component. This scheme is 
designed to facilitate false positive removal, which will be 
explained in the following. 

 

Fig. 3. Workflow of adaptively-configured Geodesic Active Contours. 

 
                     (a)                    (b)                  (c)  

Fig. 2. Examplar (a) Gradient image of a slice, (b) intial parameter image and 

(c) the updated parameter image of the slice. 
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non-zero responses to non-vessel tissues, especially on the 
edges of bones. After parameter image update, the false 
responses at bone tissues could spread widely, from edges to 
the entire bone tissues. To distinguish the true responses at 
vessels and the false responses at non-vessel tissues, we 
analyze two attributes of each connected component: (1) the 
ratio of its size before and after the update and (2) the size of 
each connected component. Statistical analysis over 8 clinical 
data reveals that the distributions of the two numbers are quite 
different for vessels and non-vessel tissues (as shown in Fig. 
5), thus a simple thresholding strategy can remove most false 
positives. Specifically, if the size ratio is greater than 2.5 and 
the size is greater than 60k voxels, the component is unlikely to 
be a vessel. Note that these threshold values, chosen based on 
analysis of ground-truth data, do not require manual tuning by 
users.  In principle, the more ground-truth data is analyzed, the 
greater accuracy the thresholds would be.     

IV. EXPERIENTAL RESULTS 

In this section, we provide quantitative evaluation of our 
method using clinical data. We first describe our datasets and 
evaluation metric, followed by the results and analysis.     

A. Datasets  

This study, approved by University of California, Los 
Angeles institutional review board, consists of evaluation of 8 
CTA clinical datasets. Each dataset contains a 3D image 
volume including both anterior cerebral circulation arteries 
(ACCA) and posterior cerebral circulation arteries (PCCA). 
Single aneurysm appears on all datasets, four located at the 
bifurcation of middle cerebral arteries (MCA) and the other 
four located at the tip of basilar arteries (BA).  

The acquisition of data was performed using 64 detectors 
scanner with 120 kV/250-300 mA for amplifier tube, 0.75 slice 
collimation and slice spacing of 0.5 mm. A total of 63 ml of 
non-ionic contrast fluid was intravenously administrated at a 
rate of 3 ml/s. The images were reconstructed on a 512x512 
volume with a square FOV of 18 cm, yielding an in-plane 
resolution of 0.35 mm. 

B. Evaluation Metric  

We evaluate the segmentation accuracy by Dice Similarity 
Coefficient (DSC), a widely used metric for validation of 
segmentation algorithms in different medical image modalities 
[9][13]. DSC is defined as:  

2 | |
( , )

| | | |

S G
DSC S G

S G

� �
�

�
,    (8) 

where S and G represent segmented voxels and ground-truth 
�	&���� ������������� �� '� �� ���	���� ���� ���� ������������ +���
ground-truth for evaluation is labeled manually by experts with 
slice-by-slice delineation of contours. Fig. 7 (a) shows ground-
truth of datasets 1, 3, 4 and 5.  DSC ranges from 0, if S and G 
do not overlap, to 1, if S and G are identical. 

C. Experimental Setup 

We compare our method, adaptively-configured geodesic 
active contours based on an iteratively-updated parameter 
image (AGAC-Iterative), with three other methods: region 
competition (RC) [5], geodesic active contours (GAC) [4] and 
a simplified version of our method, adaptive-configured GAC 
based on a parameter image constructed via a single round of 
shape filtering (AGAC-Single). For RC and GAC, we 
manually tune parameters to optimize the segmentation results. 
Specifically, for RC we uniformly choose 8 parameter values 
ranging from 1200 to 1900 for the upper bound intensity 
threshold, leading to 8 configurations. For GAC, we set the 
value of v ranging from 0.016 to 0.044 with a step of 0.004, 
yielding 8 configurations as well. For all methods, we place 10 
seeds (i.e. 10 balloons with a radius of 2.0) as initial contours 
at the same locations of ACCA and PCCA respectively.  

We use ITK-SNAP [3] implementations for GAC and RC. 
For shape filtering based on multi-scale hessian matrix 
analysis, our implementation is built upon ITK [19].    

D. Results 

First, we use two examples to illustrate how sensitive the 
segmentation accuracy, measured by DSC, to the 
configurations for the conventional GAC and RC methods. Fig. 
6 plots DSC resulting from these 8 different configurations for 
datasets 1 and 5. For GAC, the segmentation accuracy 
improves as v increases, until v reaches a certain value. This is 
because a larger v gives a greater expansion speed of a contour, 
resulting in a more complete segmentation. After v becomes 
sufficiently large, increasing v further will adversely degrade 
the accuracy (i.e. lower DSC). Since an excessively large v can 
lead to a non-zero speed at vessel edges which have small 
gradient magnitude values, yielding a leakage. Similar 
phenomenon was also observed for RC. Although for both 
datasets similar trends were observed for both RC and GAC, 
the configuration producing the greatest DSC is dataset- and 
location-dependent. For example, for ACCA of dataset 1, the 
best result of GAC is achieved by configuration 4 while for 
dataset 5 the best result of GAC is produced by configuration 
3. When comparing the GAC results of ACCA and PCCA of 
dataset 1, the greatest DSC is achieved by configurations 4 and 
<� �	�� >??>� ���� J??>� ������������� Q�
������Z� \?��� ��������
are dataset- and location-dependent as well. In comparison, our 
methods, AGAC-Single and AGAC-Iterative, do not require 
manual tuning of parameters. We therefore indicate their final 
DSCs in these charts as straight horizontal lines. Clearly our 
methods outperform RC and GAC for both ACCA and PCCA. 

 

Fig. 4. Workflow of Iterative Parameter Image Construction 

 
Fig. 5. Distributions of ratio of connected components before and after 

expansion and size of connected components. 
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Tables 1 and 2 show a complete comparison of the four 
methods over 8 datasets.  The DSC numbers for RC and GAC 
are based on the results of configurations which produce the 
most accurate segmentation among all explored configurations. 
Three observations can be made from these results: 

1) For RC and GAC, even the best result, among all explored 
configurations, fails to provide a satisfactory segmentation. 
The DSC of RC is only 66.1-80.0% for ACCA and 57.1-89.1% 
for PCCA. For GAC, the DSC is even lower: 26.6-48.5% for 
ACCA and 27.1-75.8% for PCCA respectively.  In general, the 
DSC of ACCA is lower than that of PCCA for both RC and 
GAC. This is mainly because ACCA are surrounded by 
sphenoid bone which appears closer to ACCA than PCCA. 
Therefore, leakage to the neighboring bone tissues is more 
likely to occur at ACCA locations. In addition, the geometric 
structure of ACCA is more complicated than that of PCCA. 
Therefore, segmentation of ACCA is more challenging than 
that of PCCA.  

2) Our adaptive methods (single and iterative) consistently 
achieve superior performance to RC and GAC for all datasets. 
In addition, with help of the false positive removal process 
(outlined in Fig. 4), most of the non-vessel tissues are removed, 
and hence leakage to adjacent bones is effectively prevented.  

3) Iterative updates to a parameter image can prevent 
discontinuities arising from inconformity with pre-defined 
shape models, and consequently improve segmentation results. 
By comparing the last two columns of Tables 1 and 2 we 
observe that AGAC (Iterative) further improves the 
performance of AGAC (Single) by 4.2-23.2% for ACCA and 
2.0-14.2% for PCCA. Fig. 7 (b)~(e) presents four exemplar 
segmentation results obtained by the four methods. 

V. CONCLUSIONS 

In this paper, we introduce adaptively-configured GAC for 
segmentation of cerebral vessels and aneurysms. The method 
adaptively adjusts parameters by leveraging the local shape 
around an image voxel to guide the mapping between the 
gradient magnitude of the voxel and the evolution speed of a 
contour at its location. An iterative process is further 
introduced to improve the result of local shape analysis. 
Experimental results over 8 clinical datasets demonstrate that 
our method outperforms two popular active contour 
segmentation methods (i.e. region competition and geodesic 
active contour) with manually optimized parameters. 

This work primarily demonstrated the value of the adaptive 
configuration idea to GAC. However, we believe this idea is 
also applicable to other active contour methods. Our future 
work thus includes an adaptive configuration framework for 
general active contour methods which helps make active 
contour segmentation more easily useable by end users. 
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Fig. 7. (a) Ground-truth of dataset 1, 3, 4 and 5. (b) and (c) are segmentation results using region competition and geodesic active contours with optimized 

configurations, respectively. (d) and (e) are segmentation results based on adaptive GAC (single) and adaptive GAC (iterative), respectively. Red color denotes 

anterior cerebral circulation arteries and green color denotes posterior cerebral circulation arteries.  
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